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ABSTRACT 

The purpose of this study is to determine the progression of exemplifying and example 

generalization by students. We investigated whether example generalization occurs by 

analyzing collected data by identifying whether students recognize, describe, and define 

general features of geometric examples. We also investigate how example generalization 

progresses by identifying students’ use of abduction, induction, diagrams and deduction. 

As a result of this study, we revealed that the sub-mechanisms undertake the generalization 

of examples as supported by the coordination of abduction, induction, deduction, and the 

use of diagrams. We empirically confirmed generalization by students through exemplifying 

and found that their generalization of examples involved the coordination of abduction, 

induction, deduction, and the use of diagrams.  

Keywords: exemplifying, generalization, geometric examples 

 

INTRODUCTION 

Exemplifying has been discussed as means by which to foster mathematical inquiries by 

students (Watson & Mason, 2005). An example is “a particular case of any larger class about 

which students generalize and reason (Watson & Chick, 2011, p, 284).” We can use the term 

example to represent “anything from which a learner might generalize (Watson & Mason, 

2005, p. 3).” Watson & Mason (2005) emphasized that exemplifying can facilitate students to 

construct generalized rules and students may learn about generalities through induction from 

given examples—to "see the general through the particular (Watson & Mason, 2005, p. 129)."  

Generalization has been regarded as the heartbeat of mathematics (Mason, 1996). 

Davydov (1990) argued that developing the ability in learners to generalize is one of the main 

purposes of mathematics education. Sriraman (2004) noted that “[generalization] begins with 

the construction of examples, within which plausible patterns are detected and lead to the 

formulation of theorems (p. 205).” Additionally, Zazkis, Liljedahl & Chernoff (2008) 

emphasized that generalization is afforded by considering particular examples. In other 

words, it is at the heart of mathematical inquiry to generate examples, discern the common 
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features of observed examples, and to verify and refine these provisional commonalities to 

generalize examples (Durand-Gurrier, 2003). Hence, a key issue when utilizing 

exemplification in the teaching and learning of mathematics is to comprehend students’ 

generalizations of examples generated by themselves (Watson & Shipman, 2008).  

Several studies have investigated student generalization, but elucidating and 

encouraging appropriate generalizations by students of their mathematical experiences 

remain challenging to mathematics educators (Cockburn, 2012). Although a few supporting 

and impeding types of examples of generalization have been investigated, identifying the 

mechanisms of example generalization is still a key issue in the mathematics education 

research community (Zazkis, Liljedahl & Chernoff, 2008). In this context, it is important to 

explore the connections between learner-generated examples and their generalizations by 

examining empirical studies of exemplifying activities aimed to enhance students’ 

generalizations (Bills, Dreyfus, Mason, Tsamir, Watson & Zaslavsky, 2006; Zazkis, Liljedahl & 

Chernoff, 2008). Further, studies of students’ generalizations have thus far mainly focused on 

generalizations of algebraic patterns (e.g., Radford, 2010; Watson & Shipman, 2008), despite 

the fact that geometry gives students opportunities to experience mathematical 

generalizations (Pytlak, 2015) and has different developmental paths compared those 

associated with algebra (Tall, 2013). There is also growing concern that in spite of this 

importance, example generalization remains a challenging task for learners (Becker & Rivera, 

2005; Watson & Shipman, 2008; Watson & Chick, 2011). Therefore, researchers must fill in 

some of the missing gaps in the existing line of research regarding the relationship between 

State of the literature 

 Studies claim the importance of generalization and the didactic potential of exemplification in 

mathematics teaching and learning. 

 Although some authors have investigated generalization by students, elucidating and 

encouraging appropriate generalizations by students of their mathematical experiences remain 

as challenges for mathematics educators.   

 The authors claim example generalization as an important process that can be used to support 

student inquiries using examples, but little is known about the mechanisms and characteristics 

of students’ generalizations of geometric examples. 

Contribution of this paper to the literature 

 The paper presents a teaching experiment on integrating exemplification in classrooms for 

exemplifying and example generalization.  

 The practical outcome is the design of an exemplifying task with the aim of facilitating student 

inquiries into generalization, with the task ready for use in classrooms. Additionally, deep 

empirical insight into example generalization by students is presented. 

 This study makes contributions to local learning theories about example generalization and 

empirically confirms that the coordination of abduction, induction, deduction, and the use of 

diagrams is a key factor supporting the generalization of examples. 
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the exemplification and generalization of learner-generated examples. Hence, we aim to 

identify whether exemplification by students can be generalized to geometric properties and 

how such generalizations of learner-generated examples progress. 

THEORETICAL BACKGROUND 

Exemplification and generalization 

The connections between exemplification and generalization have been discussed as a 

central issue in the mathematics education research community. Watson & Mason (2005) 

introduced the term example space, and this term helps us to envision the potential roles of 

exemplification in generalization.  

Examples are usually not isolated; rather, they are perceived as instances of a class of 

potential examples. As such they constitute what we call an example space (p. 51). 

Generalization can be supported by enriching or explicating an individual’s example 

space (Watson & Mason, 2005). We can generalize examples in various ways by diversely 

categorizing and characterizing examples in our own example space. Goldenberg & Mason 

(2008) noted that “generalization comes about through appreciating dimensions of possible 

variation and ranges of permissible change, by seeing generality through the particular” (p. 

190).  

Researchers have documented two major features of examples which are related to 

students’ generalization. The first is related to generic examples which enable us to see the 

general in the particular (Mason & Pimm, 1984). To be more specific, Weber (2008) showed 

that mathematicians used generic examples in their validations of possibly incorrect proofs 

and that generic examples enabled mathematicians to deal with generalities through a 

particular example. The second feature is related to example variation. Watson & Mason (2005) 

emphasized that example variation draws attention to generalities because one aspect varies 

and others remain the same such that we can characterize these examples. To be more specific, 

students could revise their general conjectures by observing many examples (Alock & Inglis, 

2008) and generalize algebraic patterns while experiencing numerical variation (Zazkis, 

Liljedahl & Chernoff, 2008; Watson & Shipman, 2008).  

Although it is difficult to avoid the use of examples when we deal with generalities in 

geometry (Presmeg, 2005), example generalization remains a challenging task for students 

(Becker & Rivera, 2005; Watson & Shipman, 2008; Watson & Chick, 2011). Hence, we 

investigate whether exemplification by students can be generalized to geometric properties 

and how such generalizations of learner-generated examples progress. In next two sections, 

we clarify the notion of generalization and its constituent elements, as well as the stages of the 

generalization of geometric properties to establish theoretical lenses with which to analyze 

students’ exemplifications and generalizations in this study. 
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Generalization in mathematics education 

Ellis (2007a) defined generalization as engaging in at least one of three activities: (a) 

identifying commonalities across cases, (b) extending one's reasoning beyond the range in 

which it originated, or (c) deriving broader results from particular cases (p. 227). She then 

classified generalization into two major categories: generalizing actions which are students’ 

activities as they generalize, and reflection generalizations which are students’ final statements 

of generalization. Although the term generalization can be classified into two major categories, 

we focus on the former meaning, generalizing actions, to investigate how generalizations of 

learner-generated examples progress. 

Researchers have investigated students’ generalizing actions and found that they have 

several constituent elements of generalization. Rivera (2010) emphasized that pattern 

generalization by students involves the coordination of two independent actions: abductive 

and inductive actions. He also argued that “the abductive phase is when students begin to 

offer an explanatory hypothesis for a given pattern on the basis of the available instances, 

which is then used to extend the pattern and is repeatedly tested—that is, the inductive 

phase—leading to either confirming a rule or further developing another abduction (p. 301).” 

From a traditional perspective, induction refers to the generation of new ideas from 

observations of multiple cases (Prawat, 1999). However, Peirce introduced the notion of 

abduction, distinct from deduction and induction, to avoid the pitfalls of empiricism and 

rationalism (Prawat, 1999) and focused on abduction as a phase in the discovery process 

(Pedemonte & Reid, 2011). Abduction refers to the process of forming an explanatory 

hypothesis A about an observed result B (C.P. 5.171). It takes the form ‘if A is true then B would 

be a matter of course’ (Prawat, 1999). Peirce emphasized that “abduction, on the other hand, 

is merely preparatory. It is the first step of scientific reasoning, as induction is the concluding 

step (C.P. 7.218).”  

The conclusion of an abduction is capable of verification or refutation by a comparison 

with facts. It is the first stage in scientific reasoning, followed by deduction (of further 

consequences) and induction (testing those consequences) (Pedemonte & Reid, 2011, p. 284) 

Studies have also emphasized that diagrammatic reasoning is closely related to 

generalization. Peirce emphasized that diagrammatic reasoning is a means of constructing 

abductions (C.P. 2.65, 2.77). In other words, diagrammatic reasoning is the linking ring 

between the ‘deductive nature of mathematics and those elements of observation that lead to 

discovery and development’ (Arzarello & Sabena, 2008, p. 190). A diagram is “a representamen 

which is predominantly an icon of relations” (CP 4.418), and it is possible to construct an 

abduction by diagrammatic reasoning- constructing a diagram, experimenting on it, and 

observing the results of the experiment (Hoffmann, 2005). An icon is a sign which represents 

its object by relying on its likeness to that object, and this likeness is aided by conventional 

rules (Otte, 2006). Most figures used in Euclidean geometry are both an icon and a diagram, 

as conventional rules apply to represent relationships among constituent elements (Hoffmann, 
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2004). An experiment on a diagram is the transformation of representations based on 

conventional rules; hence, the results of an experiment are assumed to have some degree of 

rationality (Park & Lee, 2016; Hoffmann, 2004). Accordingly, Otte (2006) took the role of 

diagrammatic reasoning into account when supporting the identification of hidden 

relationships by students in order to form new general properties. Although diagrammatic 

reasoning supports mathematical inquiry in diverse ways, we especially focus on 

diagrammatic reasoning as a tool for investigating students’ example generalization, as several 

studies have noted the above interrelationships between diagrammatic reasoning and 

generalization in geometry.   

We also focus on the roles of deduction in generalization. In general, deduction is a 

necessary inference driving a necessary result which must be implied on the premises (Meyer, 

2010). Although deduction mainly supports mathematical coherence (Meyer, 2010), recent 

studies focusing on generalization have shown that deductive reasoning supports the students 

in their efforts to revise their generalization actions (Ellis, 2007b). Studies have also 

documented that justifications of generic examples enable mathematicians to deal with 

generalities through particular examples (Weber, 2008). Hence, we believe that the justification 

of examples can foster refutations and revisions by students of the provisional general features 

of examples with respect to a Lakatosian perspective on the role of justification when 

developing mathematical theories (Lee, 2011). 

Thus, given the above theoretical considerations regarding generalization, we adopted 

abduction, induction, diagrammatic reasoning, and deduction tools for the present analysis of 

students’ exemplifications and generalizations in this study. On the one hand, we expect that 

these four theoretical constructs will help us to analyze our issue in detail. On the other hand, 

abduction, induction, and deduction have been discussed as key means of reasoning to create 

generalities. Therefore, investigating their interactions with generalization may provide the 

research community with insight with which to detect key issues pertaining to students’ 

knowledge construction in educational research (Prawat, 1999).    

Generalization of geometric properties 

Tall (2013) presented four stages for elaborating geometric properties. These stages are 

recognition, description, definition, and Euclidean proof.  

Each of these stages involves new insights into the properties of figures. First is the 

categorization of the shape by its general appearance, then a focus on specific properties that 

can be sensed perceptually and described verbally, then as special generative properties that 

formulate a definition, and on to the deduction of relationships between various properties 

using Euclidean proof (Tall, 2013, p. 57). 

The first stage involves recognizing the shape and visual appearance of geometric 

figures, and the second is to describe perceptually sensed properties verbally, after which 

various properties can be identified. The third stage is to define geometric properties using 

carefully selected geometric properties that enable them to be recognized and constructed, and 
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the final stage is to prove by deduction. Radford (2003) noted that there are two interrelated 

elements of generalization: grasping local commonalities and expressing generalities. From 

Radford’s perspective, the recognition stage involves grasping local commonalities, and the 

description and the definition stage are related to expressing generalities. Radford (2010) also 

sub-categorized the expression of algebraic generalities into contextual generalities and 

symbolic generalities. While the general objects are named through an embodied and situated 

description of them (e.g., “the next figure,” “the top row,” etc.) in contextual generality, the 

general objects and the operations created with them are expressed in the alphanumeric 

semiotic system of algebra in the form of symbolic generality. Compared to Radford’s 

perspective, the description stage encompasses expressing geometric generalities through 

situated descriptions and the definition stage can be interpreted to mean the expression of 

generalities in the terms and properties of geometry. The fourth stage for elaborating 

geometric properties is the Euclidean proof, where ‘deduction is utilized with the principles of 

Euclidean proof (Tall, 2013, p. 57).’ Because the principles of proof should be employed during 

the Euclidean proof stage, the fourth stage involves students’ constructions of formal proofs. 

We restrict our focus on the students’ example generalizations and do not focus on their 

construction of formal proofs; we restrict the scope of this research to recognition, description, 

and definition and deemphasize Euclidean proof. 

From this theoretical consideration of geometric generalization, we adopted Tall’s 

stages of elaborating geometric properties as a tool for an analysis of students’ exemplifying 

and generalization in geometry.  

METHOD 

Participants 

The participants in this study were twenty students in the seventh grade with high 

levels of mathematical achievement. They were selected for a program held by a science-gifted 

education center of a university and were educated in the same class for more than six months. 

To be more specific, these students were selected for this gifted education center by 

mathematics examinations, and all had grades in the top ten percent in the province in which 

the university is located. The students participated in classes held by the gifted education 

center every two weeks. These classes are inquiry-oriented mathematics classes within the 

national curriculum for students. For the purpose of this study, the students participated in a 

regular class at the science-gifted education center which lasted 3h. The names of the students 

are coded as S1 to S20.  

Data, instructional background, and research focus 

The main data for this study were obtained from the students’ written answers, video 

recordings, and lesson observations during the three-hour mathematics lesson in the spring of 

2015. In order to facilitate the use of exemplifying for generalization in mathematics 

classrooms, one would expect experimentation to take place within a regular mathematics 
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classroom. However, the aim of this study is to identify whether exemplifying by students can 

be generalized to geometric properties and how such generalizations of learner-generated 

examples progress. Other studies have noted that selecting talented and verbal participants is 

one option for achieving rich theoretical constructs with regard to the processes and 

characteristics of learners’ mathematical inquiries in an explorative study such as the present 

research (Park, Park, Park, Cho & Lee, 2013; Dreyfus & Tsamir, 2004). In this respect, we 

selected high-achieving and gifted students as the participants here to identify (i) whether 

students’ generalizations occur during exemplifying, and (ii) how generalizations of learner-

generated examples progress. Given that our analysis is based on high-achieving students, we 

consider the resulting theoretical constructs as sensible proposals for components of a theory 

which explains the didactic potentials of exemplifying rather than as a complete and refined 

theory. However, we consider that such proposals are the tools of the trade of theory building.  

Watson & Mason (2005) emphasized example generation by students can be effectively 

supported by dividing students into several small groups. In addition, Maaß (2006) pointed 

out that students’ inquiries can be effective orchestrated by supporting each individual’s 

inquiries in the context of small group interaction. Hence, the 20 participants worked together 

in five groups consisting of four students each and also worked on their own individual 

worksheets. To be more specific, we asked the students freely to exchange their ideas and 

solutions in their groups if necessary. We also asked the students to record their explorations 

on the given tasks in their individual worksheets to encourage the students actively to 

participate in exploration. As noted by Lee (2011), we also considered that these group tasks 

facilitate students’ reflective thinking and that they shift the students’ attention to support 

their mathematical inquiries. Students were asked to represent their exemplifying in various 

ways in order to foster their diagrammatic reasoning. 

The collected data were first analyzed in chronological order and divided into distinct 

but related episodes, as suggested by Cobb and Whitenack (1996). We also analyzed the results 

while focusing on the following two points: 

 Does example generalization emerge or not? 

 How does example generalization progress? 

We investigated whether example generalization emerges by analyzing collected data 

using the stages of geometric elaboration suggested by Tall (2013). That is, we analyzed 

whether students recognized, described, or defined the general features of geometric 

examples. We also investigated how example generalization progresses by identifying 

students’ use of abduction, induction, diagrams and deduction.  

The task 

The aim of the task was to determine every line which divides a parallelogram into two 

parts with the same area. This task consists of four subtasks.   

A parallelogram is a quadrilateral with two pairs of parallel sides.  
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1. Find a line which divides the parallelogram into two parts with the same area, and 

explain why this line divides the parallelogram into two parts with the same area.  

2. Find four more lines which divide the parallelogram into two parts with the same 

area, and explain why these lines divide the parallelogram into two parts with the 

same area.  

3. Explain the commonalities and differences of the lines you found in tasks 1 and 2. 

4. Find a way to obtain every line which divides the parallelogram into two parts with 

the same area, and explain why your solution is reasonable. 

 In this exemplifying task, the students were asked to generate examples of lines which 

divide a parallelogram into two parts with the same area and then to characterize these 

examples. The design of this exemplifying task is thus considered to allow students to 

generalize examples which divide a parallelogram into two parts with the same area. Zazkis, 

Liljedahl & Chernoff (2008) noted that it is important to share with readers several strategies 

that worked for researchers, presuming that similar strategies could be helpful with other 

students in other settings. Hence, we briefly illustrate how the task was designed to share 

several key points of the task.  

In subtask 1, the students were asked to generate one example which satisfies the given 

conditions. We assumed that the students could generate a simple example in task 1 and that 

they could clearly identify the given conditions by justifying their example. We initially asked 

students to generate a single example and justify it because an abduction can be constructed 

by observing a single example (Cañadas, Deulofeu, Figueiras, Reid, Yevdokimov, 2007; 

Prawat, 1999). We also believed that asking students to justify a single example may prevent 

their exemplifying from progressing to a trial-and-error strategy, as cautioned by Radford 

(2010).  

Subtask 2 dealt with variations of examples. This example variation step sought to 

facilitate student explorations of non-trivial examples. Marton (2006) emphasized the necessity 

of variation in learning. That is, learners can notice the generality encompassing particulars by 

discerning differences among particulars (Marton, 2006). Similarly, Watson & Mason (2005) 

noted the importance of example variation when generalizing learner-generated examples. 

Thus, the key to example generalization is to discern differences as well as commonalities 

when we experience example variation. As in the variation theory of Marton (2006), we 

assumed that example variation would enable the students to discern the central features of 

their examples. On the other hand, one way to facilitate example variation by students is to 

assign the number of examples to be generated by the students. That is, asking students to 

generate more examples than would be trivial may help them construct non-trivial examples 

or more exemplary examples and then to discern the general features of the examples (Watson 

& Mason, 2005). Hence, we asked the students to generate four more examples in subtask 2 

such that they would construct examples which were not trivial. We considered that trivial 

examples are lines extended by diagonals and segments which link the two midpoints of the 

corresponding sides.   
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Subtask 3 had students compare their examples to find the key characteristic of the 

examples, and subtask 4 required the students to characterize their examples. Subtasks 3 and 

4 are designed to encourage students to express geometric generality by asking them to 

characterize their examples. Mason (2011) noted that “to characterise is to establish through 

mathematical reasoning that some other property classifies exactly the same objects (p. 44).” 

He also emphasized that mathematical definitions and theorems are global properties and that 

they can be characterized in terms of local properties. As Mason (2011) also emphasized, we 

take into account the role of example characterization in helping students express common 

features of their examples as characterizing mathematical examples.  

In addition, every task asked students to justify whether their examples satisfy the 

given conditions. As reviewed previously, we assumed that a justification task may support 

the formation and revision of abductions based on a Lakatosian perspective (Lee, 2011).    

RESULTS 

In this study, we observed students’ generalizations of their geometric examples. To be 

more specific, it was revealed that the students recognized examples and diagrams, described 

the commonalities of examples, and defined the general properties of the examples. This 

chapter is organized into three parts: (a) recognizing examples and diagrams, (b) describing 

the commonalities of the examples, and (c) defining the general properties of the examples.  

Episode 1: Recognizing examples and diagrams 

 The students’ inquiries into subtask 1 were mainly carried out individually, except for 

groups 1 and 3, as finding one example was not problematic for students. Thus, we mainly 

focus on students’ inquiries with regard to this subtask at the individual level and discuss the 

group discussion held by groups 1 and 3. In this Episode, we initially address students’ 

constructions of diagrams and their attempts to find more generic diagrams. We then illustrate 

example generation and construction of abductions by students with justifications of their 

examples. 

Construction of diagrams and searching for a generic diagram 

As the students read the exemplifying task, they initially constructed diagrams which 

signify the given problem situation. Representations constructed by students are diagrams 

because they organized the relationships between the constituents of the parallelograms (e.g., 

edges, angles, areas, and lines) (cf. Hoffmann, 2004). 

The students’ diagrams are categorized into two types (hereafter D1 and D2). Whereas 

the D1 diagrams are generic parallelograms which encompass every type of parallelogram, as 

shown in Figure 1, the D2 diagrams are specialized parallelograms or rectangles, as shown in 

Figure 2. The numbers of students who constructed each type of diagram are summarized in 

Table 1. 
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Figure 1. Diagram of S12 (D1 type)                       Figure 2. Diagram of S5 (D2 type) 

 

Table 1. Types of diagrams constructed in subtask 1 

Type Diagram Number of students 

D1 Generic parallelogram 17 

D2 Rectangle 3 

The students who constructed the D2 diagrams drew lines extended by diagonals or 

segments which link two midpoints of the corresponding sides. These students changed their 

diagrams into generic parallelograms by communicating with other students or glancing at 

the worksheets of other students. The following dialogue among the students in group 1 shows 

how student S2 changed his rectangle to a generic parallelogram. 

67 S2 Aren’t rectangles ok? Don’t parallelograms include rectangles? 

68 S4 Yes, yes. 

69 S1 That’s right 

70 S4 Ok 

71 S3 There must be more conditions. 

72 S2 Conditions are also the same.  

73 S4 Rectangles are ok.  

74 S3 But… 

75 S3 But parallelograms are not rectangles. Rectangles are parallelograms. 

76 S2 Rectangles are parallelograms; parallelograms are not rectangles, ok. 

77 S3 Parallelograms have wider meanings. You shouldn’t just pick a rectangle here. 

78 S2 Hmm… ok, ok. 

Student S2 initially drew a rectangle to generate an example and found that other 

students in the same group drew parallelograms which are not rectangles. He asked other 

students in his group about the relationship between rectangles and parallelograms. Though 

students S1 and S4 drew generic parallelograms, they immediately agreed with S2, as the 

statement of S2 was also partially correct (line 67, parallelograms also include rectangles). Student 

S3 participated in this discussion and explained the relationship between parallelograms and 

rectangles (line 75). She emphasized that rectangles have more conditions (line 71) and that 
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parallelograms have wider meanings (line 77). In other words, she argued that they should 

draw parallelograms to resolve subtask 1 given that parallelograms occupy a larger category 

than rectangles. Student S2 then agreed with her idea and drew a parallelogram to find more 

examples.  

Example generation and construction of an abduction  

Though students generated a single example in subtask 1, their examples are 

categorized into two types (hereafter E1 and E2). The numbers of students who generated each 

type are summarized in Table 2. 

Table 2. Types of examples generated in subtask 1 

Type Example Number of students 

E1 Trivial examples 16 

E2 Non-trivial examples 4 

E1 examples are relatively trivial, consisting of lines extended by diagonals or segments 

which link two midpoints of the corresponding sides (Figure 1 and 2, respectively). The 

students who generated E1 examples drew lines which divide the parallelogram into two 

equiareal parts (Figure 3). 

 

Figure 3. Worksheet of S1 

E2 examples are non-trivial examples which were generated during students’ attempts 

to find lines which divide the parallelogram into two congruent quadrilaterals (Figure 4). 

The students who generated E2 examples attempted to generate examples while 

relying on the construction of an abduction. To be more specific, they assumed the following: 

‘if two parts of a parallelogram divided by their example are congruent, then the areas of each 

part will be identical’. Therefore, they attempted to find a line which satisfies their abduction.  
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Figure 4. Example generated by S11 (E2 type) 

The students who generated E2 examples constructed an abduction by attempting to 

justify their examples. The following dialogue took place between the students in group 3. 

15 S10 
I don’t think it is possible clearly to explain [why my example divides a parallelogram into 

two equal areas] 

16 S9 I can do…? 

17 S10 How? 

18 S9 These two [quadrilaterals] are congruent. 

19 S10 How? We did not learn the congruence of a quadrilateral. 

20 S9 
No, make the length of this edge identical to this. Make the length of this edge identical to 

this edge too.  

21 S10 So how can we know that these two are congruent?  

23 S9 This is that...that... 

24 S11 Right angle 

25 S12 Perpendicular 

26 S9 
And this is also perpendicular…, perpendicular… and this [corresponding edges] is 

overlapped. So it’s congruent. And this edge and this edge are parallel to each other.  

Student S10 initially found a line extended by segments which links two midpoints of 

the corresponding sides, and he attempted to verify his example with student S9. S9 claimed 

that the two areas divided by S10’s example are congruent. Justification of their first example 

was not easy work for them. S9 then rotated their examples to generate another line which 

was perpendicular to two edges of the parallelogram. She argued that the two areas divided 

by this new line are congruent because the corresponding edges and angles of these two 

quadrilaterals have identical lengths and sizes, respectively (Line 23~26). Although they 

already knew that two alternative angles are congruent when the two lines are parallel, they 

were not proficient in using this property. Accordingly, S9 found a line perpendicular to two 

edges of the parallelogram to justify her example easily based on the congruence of two 

quadrilaterals.  
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Summary of Episode 1 

In this Episode, we found how students constructed diagrams and searched for a 

generic diagram. We also identified how the students constructed an abduction and generated 

an additional example. Two key issues emerged from this section. First, the students 

constructed diagrams which signify the given problem situation, and we identified the 

students’ attempts to search for a generic diagram by students in group 1. To be more specific, 

while exchanging opinions about the relationship between parallelograms and rectangles, the 

students in group 1 structured their example space on quadrilaterals and agreed over what 

was a generic example of a parallelogram. Though we identified the students’ figures 

(parallelograms and rectangles) as diagrams, these are also examples of parallelograms. Given 

that one of the most notorious issues related to dealing with generality is the use of generic 

examples (Weber, 2008), these students’ attempts to search for more generic examples 

deserved our attention.  

As the statement of S2 was partially correct (line 67, parallelograms also include 

rectangles), students S1 and S4 agreed with his idea. Although student S2 did not draw a 

generic parallelogram, he may find lines which divide the parallelogram into two parts with 

the same area. However, his selection of an example of a parallelogram becomes problematic 

when he deals with generalities. As S3 noted, rectangles have more conditions than 

parallelograms. Therefore, the students may find more special commonalities among lines 

which divide the parallelogram into two parts with the same area if they deal with this task 

with rectangles. Thus, student S3 compared the conditions (line 71) and meanings (line 77) 

between parallelograms and rectangles and considered that dealing with a generic example of 

parallelogram is appropriate to resolve subtask 1. Though the students needed to investigate 

extreme examples to organize one’s own example space and investigate the boundaries of the 

example space to consider possibilities beyond the obvious (Watson & Mason, 2005), it is also 

important to generate generic examples to deal with generalities (Weber, 2008). This flexibility 

is valuable for students to deal with generalities, though it also presented difficulties to the 

students.  

Second, the students actively utilized diagrams during their exemplifying efforts, and 

we identified the construction of an abduction by the students in group 3. We found that most 

of the students generated trivial examples and that they recognized parallelograms and their 

examples (Figure 3). On the other hand, the students who generated non-trivial examples 

constructed an abduction while justifying their examples (Figure 4). Although these students 

carefully considered the properties of their examples, their abductions did not include the 

construction of every line which divides the parallelogram into two parts with the same area. 

Thus, they are describing features of their examples rather than defining. The construction of 

the abduction by the students in group 3 included hypothesizing that the two areas divided 

by their examples were congruent. These students generated additional examples which 

satisfy their abduction by conducting experiments on their diagrams. They could conduct an 

experiment on the diagrams by manipulating the relationships among the constituents of the 
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parallelogram and other figures, as the diagrams signified their relationships. In the next 

Episode, we identify students’ example variations and their discernment of the common 

features of their examples. The synergic relationships among abduction, induction, 

diagrammatic reasoning, and deduction are also identified in the next Episode. 

Episode 2: Describing the commonalities of examples  

 The students were asked to generate four examples in subtask 2. However, they 

generated more examples because they understood that their final goal was to find a way to 

present every line which divides the parallelogram into two parts with the same area. The 

students in group 3 mainly focused on generating more than four examples which divide the 

parallelogram into two parts with the same area, as they had already generated non-trivial 

examples while resolving subtask 1. These students continued to find examples which divide 

the parallelogram into two congruent parts. On the other hand, the students in the other 

groups initially found it easy to generate trivial examples individually, but they encountered 

some difficulty when attempting to find examples different from trivial examples while 

resolving subtask 2. Accordingly, they actively exchanged their ideas about finding non-trivial 

examples. Thus, we address the students’ inquiries at the group level in this Episode because 

our focus is on the students’ generations of non-trivial examples and example generalization.  

In this Episode, we mainly address how students begin to describe the commonalities 

of examples while experiencing example variation. We categorized students’ example 

variation into two types and therefore, illustrate how the students describe the commonalities 

of the examples in accordance with their example variation approaches. Methods by which 

the students undertook example variation were categorized into two types (hereafter V1 and 

V2). The V1 type of example variation was mainly supported by the abductions formed by 

utilizing the ideas which emerged through deductive justification, as we found in Episode 1. 

Example variations by the students in groups 2, 3, and 4 were categorized as the V1 type. Other 

students in groups 1 and 5 experienced example variation which was mainly supported by 

diagrammatic reasoning. They discerned perceptual commonalities among examples by 

experimenting on their diagrams. To be more specific, these students conducted experiments 

on diagrams and generated various examples. They then constructed an abduction based on 

the results of their experiments on diagrams. Subsequently, they inductively verified and 

tested their abduction by generating further examples. The students who undertook V2 

example variation generated many more examples then those who carried out V1 example 

variation. 

In the following sections, we address how each type of example variation progressed 

and how abduction, induction, diagrammatic reasoning, and deduction supported example 

generalization. 
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Table 3. Example variation methods in task 2 

Type Example Group 

V1 
construction of an abduction by  

deductive justification 
2, 3, 4 

V2 construction of an abduction by diagrammatic reasoning 1, 5 

V1 type example variation 

The students who used the V1 type undertook example variation by utilizing an 

abduction which emerged when they attempted deductively to justify their initial examples. 

The following is the dialogue of the students in group 4. 

50 S15 

This edge and that edge are the same in the parallelogram, and this and this are the same. That 

edge and this edge are parallel. These two angles are alternative angles and these are also 

alternative angles too. So, the angles are the same.  

51 S14 Then we do not have to cut the parallelogram perpendicularly? We can just use this... 

52 S15 
Though the line is not perpendicular, this and this... the... the length of each edge needs to 

be the same.  

53 S14 
That is, these two areas are congruent even though the line is not perpendicular to the 

edges.  

Student S14 initially generated an example similar to that shown in Figure 1 for 

Episode 1. Student S15 attempted deductively to justify this line by verifying that the two areas 

divided by the line are congruent (line 50). By considering her statements (line 50) with the 

work on her worksheet, we considered that she attempted to utilize necessary inference to 

justify her example, despite the fact that her justification was not in the form of a formal proof. 

Thus, we interpreted her statements in the above dialogue as well as the explanations on her 

worksheets as evidence of her attempts at deductive justification. Based on the abduction of 

S15, S14 generated another example, as shown in Figure 5 below, and other students in the 

same group (S13 and S16) agreed with their ideas. 

 

Figure 5. Example of S14 (group 4)                              Figure 6. Example of S10 (group 3) 
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Figure 7. Examples of S7 (group 2, the red circle was added by the authors) 

The students in groups 2 and 3 showed similar processes of example variation, as 

depicted in Figures 6 and 7. Example variation by group 3 was addressed in the first Episode. 

The students in group 2 also constructed abductions from deductive justification and utilized 

these abductions to find non-trivial examples. The four diagrams in Figure 7 clearly show the 

V1 type of example variation. The students in group 2 initially generated trivial examples, as 

shown in the panel (1) in Figure 7, after which they deductively justified these trivial examples. 

They utilized the congruence between two areas deductively to justify their trivial examples 

and then generated other examples, as shown in the panel (2) in Figure 7, which satisfy their 

abduction while deductively justifying (1) in Figure 7: ‘if two parts of a parallelogram divided 

by their example are congruent, then the area of each part will be identical.’ The students in 

group 2 then deductively justified their example (2) in Figure 7, finding that lines which divide 

the parallelogram into two congruent parts do not have to be perpendicular to two sides of 

the parallelogram. These students utilized the properties of alternative angles with parallel 

lines and constructed a revised abduction: ‘if one line bisects two edges of the parallelogram, 

then two parts of a parallelogram divided by this line will be congruent.’ Therefore, the 

students in group 2 generated another example (3) in Figure 7 which satisfies their revised 

abduction. These students attempted deductively to justify their example (3) in Figure 7. They 

then found that this line does not always have to bisect two sides of the parallelogram, as the 

two quadrilaterals ABFE and EFDC in the parallelogram (3) in Figure 7 are congruent despite 

the fact that the lengths of segments AE and FD are not identical. Accordingly, they 

constructed example (4) in Figure 7. However, they did not characterize this example (4) in 

Figure 7 while resolving subtask 2; therefore, we could not identify the abduction which they 

utilized to construct example (4) in Figure 7 while resolving subtask 2.   

Although these students in groups 2, 3, and 4 used diagrams, we categorized these 

students’ example variation efforts as the justification focused type given that their abductions 

were mainly constructed through their deductive justification efforts. Interestingly, the 

students in these three groups initially generated an example perpendicular to two edges of 

the parallelogram and then generated a more generalized example. As discussed in relation to 

the first Episode, this likely stems from the fact that the students were not proficient in using 

the properties of alternative angles with parallel lines. The activities of example variation and 

revision of the abductions by the students in groups 2, 3, and 4 are summarized in Figure 8. 
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Figure 8. Revision of abductions by groups 2, 3, and 4 

The students in groups 2 and 4 constructed and gradually revised their abductions 

along the path in the figure above. On the other hand, the students in group 3 constructed an 

abduction which was a mixed version of abduction 1-1 and abduction 1-2 because they 

generated examples which were both perpendicular to two edges and then divided these two 

edges of the parallelogram into two parts with the same ratio (Figure 4 in the first Episode).  

As noted above, the students in groups 2, 3 and 4 constructed abductions on 

commonalities among the examples, and these abductions consisted of carefully selected 

features of their examples. Although these students’ abductions are neither perceptual nor 

contextual, their abductions nonetheless cannot include every line which divides the 

parallelogram into two parts with the same area. Thus, they are still in the description stage.   

In the summary of the V1 type of example variation, the students initially generated 

trivial examples and then constructed an abduction during the deductive justification of their 

examples. They subsequently generated other examples which satisfied their abductions. This 

phase is similar to the inductive verification phase which was noted in Rivera (2008). These 

students then deductively justified these new examples and revised their abductions again 

(Figure 7). Figure 9 summarizes the V1 type example generalization process. 

 

Figure 9. The V1 type of example generalization 
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V2 type example variation 

The students who used the V2 type (groups 1 and 5) mainly experienced example 

variation by means of diagrammatic reasoning. These students constructed abductions by 

observing the results of experimentation on diagrams. They then generated more examples to 

test and revise their abductions by conducting further experimentation on diagrams with 

regard to their abductions.  

The students in group 1 initially generated a few lines and found that the two parts of 

the parallelogram divided by their lines are located at a position of symmetry. At the outset, 

S4 initially argued that these two parts of a parallelogram are located at a position of line 

symmetry, but this abduction was reputed by other students’ examples (Line 136). S3 found 

that their examples passed through one point and therefore modified S4’s abduction such that 

it held that the two areas divided by a line are located at a position of point symmetry. S3 and 

S1 then claimed that ‘every line passing through a point of symmetry divides a parallelogram 

into two parts with the same area.’ The following is the dialogue of the students in group 1, 

and S2 agreed with this conversation. 

135 S4 If line symmetry...if we fold, then do these two areas overlap? 

136 S3 No, so this is point symmetry~ 

137 S1 point symmetry 

 

 

Figure 10. Diagrams of S1 

Student S1 drew dotted lines to find the corresponding points to verify that the two 

areas divided by his example are located at a position of point symmetry, as shown in the 

diagram on the right in Figure 8. It is important to note that S1 marked and described the 

commonalities of lines as the point of symmetry, but he did not clearly characterize this point. 

He attempted to verify whether these dotted lines are equally divided by the point marked 

inside the parallelogram, but he did not complete his deductive justification. Figure 11 below 

summarizes the activities of example variation and revision of the abductions by the students 

in group 1. 

The students in group 5 also generated many examples in their diagrams, finding their 

perceptual commonalities. S17 initially argued that he can find every line which divides the 

parallelogram into two parts with the same area by rotating lines around the center point 

inside the parallelogram (Figure 12). 
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Figure 11. Revision of the abductions by group 1 

 

Figure 12. Worksheet of S17 (group 5) 

He claimed that the areas of the two parts of the parallelogram divided by these lines 

are identical because the lengths of the two parts of the topside edge and the base-line divided 

by his examples change by an identical amount. It is important to note that S17 marked and 

described the commonalities of lines as the center in Figure 11. However, he did not clearly 

characterize ‘the center’ of the parallelogram. In group 5 (S17~S20), S17 was the first to suggest 

this idea, and S18 and S19 agreed with this. Thus, S18 and S19 found examples in similar ways 

to S17. On the other hand, S20 attempted to justify his examples using congruence, but he 

could not complete this justification while resolving subtask 2. 

As noted above, the students in group 1 described the commonalities of their examples 

as ‘passing the symmetric point.’ In addition, the students in group 5 marked and described 

the commonalities of their examples as ‘passing the center of the parallelogram.’ Hence, we 

confirmed that the students in groups 1 and 5 described commonalities among examples 

rather than defining, as they verbally described how the perceptual commonalities of 

examples cannot construct every line which divides the parallelogram into two parts with the 

same area.  

In the summary of the V2 types of example variation, the students initially generated 

a few trivial examples in their diagrams and then constructed abductions (line 

symmetry/equiareal transformation) by experimentation on and observations of their 

diagrams. They then generated more examples in their diagrams and verified their abductions 

(group 5) or revised their abductions (group 1: point symmetry). However, none of the 
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students in either group clearly characterized the points marked inside their parallelograms. 

They simply referred to this point as the center, or the point of symmetry. Figure 13 

summarizes the V2 type of example generalization. 

 

Figure 13. The V2 type of example generalization 

Summary of Episode 2 

In this Episode, we identified how students construct abductions and describe 

commonalities among their examples and then generate more generalized examples. The 

students constructed provisional abductions and verified or revised these abductions (Figures 

8 and 11). Two key issues emerged from this Episode. First, we identified two types of example 

variation and generalization by the students while also identifying the synergic relationships 

among abduction, induction, diagrammatic reasoning, and deduction for each type of example 

generalization. The students in groups 2, 3, and 4 constructed abductions while attempting 

deductively to justify their examples (V1 type). Pedemonte & Reid (2011) reported that 

students construct abductions while undertaking deductive justification because deductive 

reasoning requires the construction of hypothetical premises to utilize necessary inferences. 

Similarly, the students in this study constructed abductions of their examples while 

deductively justifying these examples. They also utilized an inductive phase to verify and test 

their abductions, as noted by Rivera (2010), and revised their abductions while deductively 

justifying their newly generated examples. Although prior studies argued the importance of 

deductive reasoning when dealing with generalization, the major role of deductive 

justification during the generalization was to refute or modify provisional generalities (Lee, 

2010; Ellis, 2007b). On the other hand, the students in this study utilized deductive reasoning 

to construct abductions and described commonalities among examples. In other words, the 

students’ efforts at deductive justification directly supported the construction of provisional 

generalities. We also consider that the students’ inductive phases were supported by their use 

of diagrams. Because these diagrams signified relationships between their examples and other 

constituents of their diagrams, the students’ use of diagrams supported their efforts to 

generate modified examples which satisfied their revised abductions. 

The students in groups 1 and 5 constructed abductions by diagrammatic reasoning (V2 

type) and revised their abductions by generating further examples. As Rivera (2010) noted, we 

also identified abductive and inductive phases in the students’ type V2 generalizations. We 

further empirically confirmed that the students in this study constructed abductions by 

diagrammatic reasoning, as claimed by other researchers theoretically (Hoffmann, 2005; Otte, 

2006). We consider that the students’ constructions of abductions were supported by their use 

of diagrams, as these diagrams signified relationships among their examples and other 
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properties of the constituents of their diagrams. It is important to note that the above 

categorization of student exemplification is not intended to be hierarchical. We found that the 

students who focused on diagrammatic reasoning represented their examples by a single 

diagram, whereas the students who focused on deductive justification drew each of their 

examples in the form of different diagrams. Therefore, the students who focused on deductive 

justification did not find a perceptual commonality among their examples as identified by the 

students who focused on diagrammatic reasoning.  

Second, we empirically confirmed that example variation supported the generalization 

of learner-generated examples. Studies have theoretically indicated that example variation 

may support the generalization of examples (Watson & Mason, 2005), and we empirically 

confirmed this. To be more specific, generalization by students progressed from the 

recognition stage to the description stage during the example variation processes. On the one 

hand, example variation supported students’ constructions of abductions (V2 type). The 

students could construct abductions on their examples while experiencing example variation. 

On the other hand, the construction of abductions also supported example variation (V1/V2 

type). To be more specific, the students could generate further examples by considering lines 

which satisfied their abductions. While the former type of example variation played a role in 

generating abductions, the latter type of example variation supported the verification as well 

as the revision of abductions. 

Example variation by the students progressed dynamically, coming and going between 

the generation of particular examples and the construction and reconstruction of abductions. 

However, the students’ generalization efforts remained in the description stage with regard to 

Tall’s stages of generalization. Although the students constructed, utilized, and revised 

abductions while generating further examples, they could construct abductions only by 

describing examples which they had already generated. That is, their abductions could not 

encompass every example and only described partial examples generated by them, as the 

students mainly focused on the generation of further examples rather than considering every 

possible example while experiencing example variation.  

  Episode 3: Defining the general properties of examples 

The students had already actively exchanged their ideas when they attempted to 

resolve the previous subtasks, and their inquiries during subtasks 3 and 4 initially began with 

group discussions. Thus, we examine the students’ inquiries during subtasks 3 and 4 at the 

group level in this Episode. In this Episode, we initially address how the students named the 

commonalities among their examples, after which we illustrate how the students defined the 

general properties of their examples. 

Naming perceptual commonalities  

As noted for Episode 2, the students who focused on diagrammatic reasoning (groups 

1 and 5) found this commonality among their examples and verbally described the 

commonality as the center or the symmetric point when they resolved subtask 2. The students 
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in groups 2, 3 and 4 also found that lines dividing a parallelogram into two equal areas pass 

through a single point inside the parallelogram while resolving subtask 3. They were asked to 

find commonalities among examples in subtask 3. Although these students focused on 

congruence as they resolved subtask 2, they already represented some of their examples in a 

single diagram (Figures 6 and 7, in Episode 2). With these diagrams, the students in groups 2, 

3 and 4 drew their examples in a single diagram and then found that their examples pass 

through a single point. To be more specific, S7 initially found this perceptual commonality in 

group 2, and the other students in group 2 verified whether their examples pass through this 

point. In group 3, S9 and S10 found this common point and shared this idea with other 

students in the same group. In group 4, S15 initially found this common point, and other 

students in the same group verified his claim with regard to their examples and agreed with 

his idea.  

During this process, these students also verbalized this perceptual commonality as a 

single term which they heard from the discussions of groups 1 and 5, though they did not 

directly communicate with the students in the other groups. To be more specific, the students 

in groups 2, 3, and 4 initially used the term ‘center’ mixed with the term ‘symmetric point’ to 

describe the point passed through in their examples. However, these students began to 

disregard the term symmetric point and instead used the term ‘center’ in the end, as they did 

not utilize symmetric transformation to generate and justify their examples.  

In subtask 4, the students were asked to find a way to obtain every line which divides 

the parallelogram into two parts with the same area. When the students started resolving 

subtask 4, their abductions were slightly revised, and they shared these abductions in each 

group. To be more specific, the students in groups 2, 3, 4 and 5 shared the following abduction 

in their groups: ‘every line passing through the center of a parallelogram divides the 

parallelogram into two parts with the same area.’ The students in group 1 shared the following 

abduction in their group: ‘every line passing through a point of symmetry divides a 

parallelogram into two parts with the same area.’ The students in groups 2, 3 and 4 started to 

focus on the center and attempted to clarify this point, as their abductions constructed during 

subtask 2 could not encompass every example. The students in groups 1 and 5 had already 

constructed the above abductions while resolving subtask 2. Thus, the students mainly began 

focusing on this point (the center, the symmetric point) to find a way to obtain every line which 

divides the parallelogram into two parts with the same area. 

Defining geometric properties  

Subtask 3 only asked the students to explain commonalities and did not ask them to 

justify their ideas. Hence, the students initially attempted to verify whether every line passing 

through the center of a parallelogram or a point of symmetry in fact divides the parallelogram 

into two parts with the same area when resolving subtask 4. During this process, the students 

could define the common point through which their lines passed, termed the center of a 

parallelogram (groups 2, 3, 4 and 5) or a point of symmetry (group 1). The key to their 

justification was to justify their abductions with an arbitrary line passing through the point 
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inside the parallelogram. Because the students had already generated non-trivial examples 

while resolving the previous subtasks, they could attempt to justify their abductions with non-

trivial examples, similar to the line inside the red circle shown in Figure 14. 

 

Figure 14. Diagram of S6 (the red circle was added by the authors) 

The students in groups 2, 3, and 4 attempted to justify their abductions by utilizing the 

congruence of two areas. Their justifications were mainly led by one or two students in each 

group, and the other students verified the justification processes or presented additional 

opinions. Because every line dividing a parallelogram into two parts with the same area passes 

through a single point, it was clear for the students that diagonals also pass through such a 

point. Therefore, they naturally drew diagonals to use them for justification. They then divided 

the parallelograms into triangles to compare the areas (Figure 14) or attempted to argue for 

the congruence of trapezoids by comparing the lengths and sizes of every corresponding edge 

and angle (Figure 15), respectively. 

 

Figure 15. Justification written on the worksheet of S17 

During this justification step, the students could define the point inside the 

parallelogram as ‘an intersecting point of two diagonals of the parallelogram.’ This can be 

considered as a definition of the examples, as this is a generative property which enables the 

construction of every line which divides the parallelogram into two equiareal parts. As noted 

above, the fact that every line passes through the center of the parallelogram is a special 

generative property of their examples, and their previous abductions did not have such a 

generative aspect. Thus, the students defined this point and suggested this generative 
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property as a way to obtain every line which divides the parallelogram into two parts with the 

same area. 

The students in group 5 also similarly advanced their inquiries, as S20 continually 

attempted to find a way to justify congruence between the two areas divided by their 

examples. Although S17 initially claimed to justify their abductions of equiareal 

transformation, but he could not clearly complete his justification. Therefore, S17 and the 

students in group 5 changed their justification method to focus on congruence. 

The students who described the commonalities of lines as a point of symmetry claimed 

that there is a single point inside the parallelogram and that two parts of a parallelogram 

divided by every line passing this point are located at a position of point symmetry. 

 

Figure 16. Diagram of S3 (the letters E and F were added by the authors) 

These students drew dotted lines to find corresponding points to verify that the two 

areas divided by the example are located at a position of point symmetry. There are two dotted 

lines BD and AC in Figure 12, and two other dotted lines overlap the line dividing the 

parallelogram. The students attempted to verify whether these dotted lines pass through a 

point and are equally divided by the point. During this process, dotted lines linking two pairs 

of opposite points of the parallelogram were drawn for every line such that the students could 

discern the diagonals. Hence, these students also defined the point of symmetry as an 

intersecting point of two diagonals of the parallelogram. 

However, these students could not complete their justification. They needed to show 

that two parts of the parallelogram divided by lines passing through the intersecting point of 

two diagonals are located at a position of point symmetry, but they had difficulty verifying 

that segment EF in Figure 12 is equally divided by such a point. To verify this property, the 

students had to divide the diagram into several triangles and verify their congruence; hence, 

their style of justification was more complicated than those of the students who used 

congruence.   
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Summary of Episode 3 

 There are three issues that emerge from this section. First, the students termed the 

perceptual commonalities among their examples, and this was supported by representing 

their examples in a single diagram. As we noted in the Episode 2, the students in groups 1 and 

5 already termed commonalities among their examples as ‘passing the center’ or ‘passing the 

point of symmetry.’ In this Episode, the students in groups 2, 3, and 4 also termed commonalities 

among their examples while representing their examples in a single diagram. Hoffmann (2004, 

2005) emphasized that diagrams synthesize relationships among mathematical objects. In this 

sense, the students could relate their examples in a single diagram and could focus on and 

term commonalities among their examples. 

Second, the students’ ways of inquiry changed from the moment they termed 

commonalities among examples. As we noted, the students’ inquiries were mainly focused on 

abduction, deduction, and induction of their examples while they undertook example 

variation. On the other hand, they begin to characterize the named point (the center, the point 

of symmetry), as they named the point inside the parallelogram which was passed by their lines. 

As Sfard (1991) emphasized, condensation of students’ actions is very important when 

students conceptualize and manipulate their actions. From the moment students termed the 

commonalities of their examples, they no longer needed to examine many examples. The 

students only had to examine the center or the point of symmetry to deal with numerous 

examples or generalities. Thus, we consider that the students’ naming of commonalities 

among examples enabled them to deal with generalities in a tightly condensed manner rather 

than dealing diversely with numerous possible examples. 

Third, the students could define the commonalities of their examples while justifying 

their abductions. To be more specific, the students attempted to justify their abduction using 

a general example from among their examples (Figures 14, 15, and 16) as well as trivial 

examples which were diagonals of the parallelogram. The students could focus on their 

abductions rather than on single examples when attempting to characterize and justify every 

example. That is, the students’ example generation and justification actions mainly focused on 

additional examples generated by them while undertaking example variation. The students 

described the commonalities of their examples, but they could not define them when resolving 

subtask 2. On the other hand, the students utilized a general example among their examples 

to characterize every example and this enabled the students to justify their abductions rather 

than single examples while resolving subtask 4. As a result, the students could define the 

commonalities among examples. The students’ use of generic example also played a key role 

in the creation of their definitions, as they had to select a representative example from among 

their examples to define and justify their abductions.     

DISCUSSION AND CONCLUSION 

In this study, we aimed to investigate student inquiries into exemplifying and example 

generalization. We especially focused on students’ use of abduction, induction, diagrams, and 
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deduction as the students generalized their examples. As a result, we determined that the 

students in this study used abduction based on both deduction and diagrammatic reasoning 

and generalized their examples by gradually revising their abductions. Though we could not 

show the overall mechanism used for example generalization, we revealed that the sub-

mechanisms undertake the generalization of examples as supported by the coordination of 

abduction, induction, deduction, and the use of diagrams.  

First, we identified the synergic relationships among students’ use of abduction, 

induction, diagrams, and deduction during the generalization of learner-generated examples. 

Studies emphasized identifying interactions among the constituent elements of their 

generalization actions, as abduction, induction, and deduction have been discussed as key 

elements of knowledge creation as well as generalization (Prawat, 1999). The relationship 

between the abductive phase and the inductive phase during pattern generalization was 

investigated (Rivera, 2010), and we empirically identified the relationships among abduction, 

induction, the use of diagrams, and deduction as it pertains to students’ generalizations of 

geometric examples.   

The students utilized abduction, induction, and deduction in two ways when 

generalizing their examples. The first set of students focused on deduction, initially attempting 

deductively to justify their examples and then constructed abductions and revised them 

through induction (Figure 9). The second set of students focused on diagrammatic reasoning 

(Figure 13). They first constructed an abduction while experimenting on their diagrams, after 

which they gradually revised their abductions through induction. Whereas the first set of 

students described the commonalities of examples with regard to the properties of their 

examples, the second set of students described the perceptual commonalities of examples. We 

also identified the key roles of diagrams for each type of example generalization by students. 

First, we found that the students who experienced V1 type example variation utilized their 

diagrams to generate additional examples which satisfied their abductions. These students 

used diagrams to modify their examples to generate further examples which satisfied their 

abductions (Episode 2). Second, we identified that the students’ use of diagrams supported 

their construction of abductions for the V2 type example variation. Studies have theoretically 

emphasized that diagrammatic reasoning plays a key role in the construction of abductions 

through experimentation on and observations of diagrams (Hoffmann, 2004). Because 

diagrams signify relationships among particulars (Otte, 2006), the students could identify and 

manipulate the relationships and commonalities among their examples. To be more specific, 

the participants in this study identified relationships among the constituents of the 

parallelograms in diagrams. They then conducted experiments (e.g., rotated lines, found 

correspondences, combined their examples into one diagram) on diagrams and synthesized 

their example generation and variation tasks to construct abductions on the commonalities 

found in their examples (Episodes 2 and 3).  

The types of student generalizations were not hierarchically divided in this study. 

Although we assumed that this difference is related to how the diagrams were used, further 
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studies of the differences and similarities with regard to these two ways of coordinating three 

types of reasoning in other learning contexts are encouraged, as diagrammatic reasoning (Otte, 

2006) and the Lakatosian approach (Lee, 2011) are both key methods of geometric inquiry, and 

we identified different ways by which they progress. 

Compared to algebraic generalization, deductive reasoning played a key role in the 

generalization of geometric examples by supporting the construction of abductions and the 

defining of commonalities. To be more specific, the students’ deductive reasoning supported 

the construction of abductions (Episodes 1 and 2) and encouraged the students to define 

commonalities among their examples (Episode 3). Researchers have reported students’ 

construction of abductions when they attempt to justify a mathematical hypothesis 

(Pedemonte & Reid, 2011). The deductive process requires students to construct and utilize 

abductions from their observed results (Pedemonte & Reid, 2011), and this explanatory 

hypothesis about their examples also supports the students’ efforts to describe the common 

properties of their examples in Episode 2. The students could also define the commonalities 

among examples while deductively justifying their abductions in Episode 3.   

Second, naming commonalities among examples by the students helped them to pay 

attention to the generalities. When the students experienced example variation, they mainly 

focused on additional examples generated by them and attempted slightly to modify their 

abductions via these additional examples (Episode 2). As noted by Radford (2010), it is 

necessary when engaging in generalization to notice local commonalities and extend them to 

all cases. However, the students could not focus on general features as opposed to local 

commonalities during Episode 2. In Episode 3, the students named the commonalities of their 

examples and justified their characterizations, and this encouraged them to deal with 

generalities to handle the commonalities of every example, and they focused on abduction 

itself rather than on particular examples.  

Third, the students’ use of generic examples was an important factor in how they dealt 

with generalities. Although researchers have emphasized seeing generalities through 

examples and noted the role of exemplary examples (Watson & Mason, 2005), we especially 

identified the role of generic examples during the example generation process (Episode 1) and 

in defining the commonalities of examples (Episode 3). The students generated several 

abductions while undertaking example variation but did not clearly define their 

commonalities, as they did not focus on the most generic examples from among their examples 

(Episode 2). In Episode 3, the students could define the common features of their examples 

while utilizing a generic example to generate non-trivial and exemplary examples from among 

their examples. The students’ attempts to organize their example space enabled them to focus 

on generic examples (Episode 1) as Watson & Mason (2005) theoretically noted. The diagrams 

also supported students in their efforts to link a generic example, trivial examples, and the 

properties of the parallelogram. To be more specific, the students drew generic examples and 

trivial examples in their diagrams, and they could define the commonalities of their examples 

by utilizing trivial examples (diagonals) and the properties of parallelograms (Episode 3). 
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In this study, we empirically confirmed the students’ example generalization and the 

sub-mechanisms of their example generalization. Although we partially found a synergic 

relationship among the students’ use of abduction, induction, diagram, and deduction, this 

effort remains incomplete. Moreover, a limitation of this research resides with the participants. 

The student participants constitute high-achieving or more advanced learners. The study 

groups did not contain achievers of differing levels. Another limitation relates to the limited 

use of exemplifying task types. Watson & Mason (2005) discussed various types of 

exemplifying tasks. Further studies involving exemplifying tasks of different types as well as 

task sequencing are encouraged in order to verify the possibility of including exemplifying in 

the teaching and learning of mathematics. 
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